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Abstract. We analyze the degree distribution’s cut-off in finite size scale-free networks. We show that the
cut-off behavior with the number of vertices N is ruled by the topological constraints induced by the
connectivity structure of the network. Even in the simple case of uncorrelated networks, we obtain an
expression of the structural cut-off that is smaller than the natural cut-off obtained by means of extremal
theory arguments. The obtained results are explicitly applied in the case of the configuration model to
recover the size scaling of tadpoles and multiple edges.

PACS. 89.75.-k Complex systems – 87.23.Ge Dynamics of social systems – 05.70.Ln Nonequilibrium
and irreversible thermodynamics

1 Introduction

Recent years have witnessed an increasing scientific inter-
est for the study of complex networks and the dynami-
cal processes taking place on top of them [1,2]. Indeed,
the complex topological properties shown by many real
networks have large effects on the behavior of several phe-
nomena characterizing the dynamics and stability of these
systems. These effects are particularly intriguing in the
case of scale-free (SF) networks, that is, in networks in
which the probability P (k) that a vertex is connected to k
other vertices (the degree distribution) scales as a power
law, P (k) ∼ k−γ [1,2]. In general, uncorrelated SF net-
works with a degree exponent γ ≤ 3, exhibit the lack of
epidemic and percolation threshold, that can be identi-
fied in terms of critical phenomena with the absence of
any critical point [3–5]. These results have been general-
ized to several epidemic and percolation models [6–8], even
in the presence of correlations [9,10], and in critical phe-
nomena [11,12]. In all these systems, the absence of the
critical point finds an explanation in the diverging second
moment 〈k2〉 of the degree distribution of SF networks
with γ ≤ 3, that implies unbounded degree fluctuations in
the limit of infinite network size N → ∞.

Real networks, however, have always a finite number
of vertices N , and it has been pointed out that finite
size effects reintroduce a positive threshold in critical pro-
cesses [6,13]. Indeed, the finite size of real networks intro-
duces a bound in the possible values of the degree, depend-
ing on the system size N , which has the effect of restoring
a limit in the degree fluctuations, re-inducing in this way a
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non-zero critical point. Therefore, the existence of bounds
for the maximum degree becomes a relevant element in
order to estimate the critical properties of dynamical sys-
tems defined in networks with SF topologies.

The presence of bounded SF distributions in complex
networks has been observed in several systems [14]. In
some cases, the bound or degree cut-off can be explained
in terms of a finite capacity of the vertices to collect con-
nections or due to incomplete information [14,15]. In this
case, the value of the cut-off is a constant that depends
on the physical constraints acting on the systems. A sec-
ond possibility, the one in which we are interested here,
takes place when the cut-off is purely accounted for by the
finite size of the network, as usually happens in growing
networks, that have grown up to a maximum number of
vertices N [16,17].

In this paper we will reconsider the nature of the cut-
offs due to finite-size effects in SF networks. We will review
how to estimate this cut-off in terms of extreme value the-
ory, and point out how this estimate is affected when one
takes into account the topological structure of the net-
work. Our considerations will be illustrated by analyzing
an example of uncorrelated network model.

2 Extreme value theory and the natural
cut-off

The nature of the degree cut-off in finite-size SF networks
has been considered in several instances in network theory.
For example, Aiello et al. [18] proposed to define a cut-
off km as the value of the degree for which we expect to
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observe at most one vertex, that is

NP (km) ∼ 1. (1)

For a SF network, this expression provides a dependence
of the cut-off with N as

km(N) ∼ N1/γ . (2)

This definition, however, lacks some mathematical rigor,
since it considers the probability of a single point in a
probability distribution, which is not completely well-de-
fined in the continuous k limit for large N .

A more physical definition of cut-off was given by
Dorogovtsev et al. [19], defining it as the value of the
degree kc above which one expects to find at most one
vertex,

N

∫ ∞

kc

P (k)dk ∼ 1. (3)

In this case, we obtain

kc(N) ∼ N1/(γ−1), (4)

which is known as the natural cut-off of the network.
The origin of the natural cut-off, as well as the con-

straints that must be imposed to validate its accuracy, can
be better understood in terms of extreme value theory. In-
deed, if we have a random variable distributed according
to the probability density ρ(x) and we draw N observa-
tions of this quantity, {xi}, i = 1 · · ·N , the maximum
value of this sample, max{xi}, will, in turn, be a random
variable. Extreme value theory is aimed at finding the sta-
tistical properties of this maximum. In the simplest case,
the sample is built up of independent events and the distri-
bution function, giving the probability that max{xi} < X ,
is simply given by

Π(X) =

{∫ X

ρ(y)dy

}N

. (5)

The probability density π(X) that max{xi} is equal to X
is therefore the derivative dΠ(X)/dX and the cut-off is
then defined as the average value of the extreme value of
the sample, that is,

xc(N) =
∫

Xρ(X)N

{∫ X

ρ(y)dy

}N−1

dX. (6)

This cut-off is always an increasing function of the sample
size and gives us information about the finite size effects
of the process under study. In a scale-free network, the
probability density ρ(x) corresponds to the degree distri-
bution, that scales as P (k) ∼ k−γ . By substituting P (k) in
equation (6), we recover the natural cut-off scaling given
by equation (4). Even though equations (6) and (3) give
slightly different exact values for kc(N), both lead to the
correct dependence on the system size N , which is, in most
cases, the relevant information.

It is important to recall that this form of the natural
cut-off is obtained under the assumption that all the el-
ements of the sample are independently drawn from the
probability density P (k). However, in real networks the
degrees of the vertices are not simply independently drawn
from a probability distribution P (k), but must satisfy
some topological constraints due to the network structure.
Thus, we must include also the structure of the connec-
tions when considering the scaling of the cut-off.

3 Structural properties of networks
and the structural cut-off

In order to shed some light on this problem we first need to
characterize some structural aspects of networks [20,21].
In what follows we will consider undirected sparse net-
works, that is, networks with a well-defined thermody-
namic limit (or, equivalently, constant average degree 〈k〉),
with N vertices. Let us define Nk as the number of vertices
of degree k. This quantity satisfies

∑
k Nk = N which,

in the thermodynamic limit (N � 1), allows to define
the degree distribution as P (k) = Nk/N . The degree dis-
tribution P (k) contains only information about the local
properties of vertices, that is, the number of edges that
emanate from each vertex. Thus, we also need to specify
how different degree classes are connected to each other.
To this end, we define the symmetric function Ekk′ , that
gives the number of edges between vertices of degree k
and k′, for k �= k′, and two times the number of self-
connections1 for k = k′. This matrix fulfills the identities∑

k′
Ekk′ = kNk, (7)

∑
k,k′

Ekk′ = 〈k〉N = 2E, (8)

where E is the total number of edges in the network. This
last identity allows to define, again in the limit N � 1,
the joint distribution

P (k, k′) =
Ekk′

〈k〉N , (9)

where the symmetric function (2 − δk,k′ )P (k, k′) is the
probability that a randomly chosen edge connects two ver-
tices of degrees k and k′. It is easy to see that, in fact, the
degree distribution P (k) can be derived from the joint
distribution P (k, k′) as

P (k) =
〈k〉
k

∑
k′

P (k, k′). (10)

Therefore, the joint distribution conveys all the informa-
tion at the degree-degree level. In particular, the assor-
tative (disassortative) character of the correlations in the

1 By self-connections we mean connections between vertices
in the same degree class.
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Fig. 1. Geometrical construction of the structural cut-off ks.

network, that is, the tendency of vertices to connect to ver-
tices of the same (different) degree class, can be quantified
by means of the Pearson coefficient r, defined as the corre-
lation coefficient of the joint distribution P (k, k′) [22,23].
It is worth mentioning that all the above quantities are
defined outside the context of any specific model, which
make them completely general.

To proceed further, let us define rkk′ as the ratio be-
tween the actual number of edges between vertices of de-
grees k and k′, Ekk′ , and the maximum value for this quan-
tity, mkk′ . Assuming that multiple edges are not allowed in
the network the maximum number of edges between two
degree classes is2 mkk′ = min{kNk, k

′Nk′ , NkNk′} and,
consequently, the ratio rkk′ can be written as

rkk′ =
Ekk′

mkk′
=

〈k〉P (k, k′)
min{kP (k), k′P (k′), NP (k)P (k′)} . (11)

A key property of this ratio is that it must be smaller
than or equal to 1 for any values of k and k′, regardless
of the type of network. We can use this simple observa-
tion to draw some conclusions over the value of the cut-off
imposed by the structure of the network. Let us consider,
see Figure 1, the space k-k′ in which the joint distribution
P (k, k′) is defined. The curve rkk′ = 1 defines the bound-
ary3 separating the region in which the pairs (k, k′) take
admissible values (rkk′ ≤ 1) from the unphysical region
rkk′ > 1. If we define a structural cut-off ks as the value
of the degree delimiting the largest square region of admis-
sible values, we obtain that it is given as the intersection

2 While the restriction of not having multiple edges may
appear unnecessary under a mathematical point of view, it
is usually observed in real networks where redundant edges
are not considered as a part of the network. If multiple
edges are instead allowed mkk′ is simply given by mkk′ =
min{kNk, k′Nk′}.

3 For simplicity, we have assumed that this boundary is given
by a smoothly decreasing concave function. The same result
applies for convex boundaries. More complex situations can be
considered along the same lines of reasoning.

of the curves rkk′ = 1 and k′ = k. That is, the struc-
tural cut-off can be defined as the solution of the implicit
equation

rksks = 1. (12)

In the following, we will discuss the implications of the
structural cut-off defined in the previous expression.

It is worth noticing that as soon as k > NP (k′) and
k′ > NP (k) the effects of the restriction on the multi-
ple edges are already being felt, turning the expression
for rkk′ to

rkk′ =
〈k〉P (k, k′)

NP (k)P (k′)
. (13)

In the case of interest of SF networks these conditions are
fulfilled in the region k, k′ > (αN)1/(γ+1) (where α is con-
stant depending on de details of the function P (k)), well
below the natural cut-off. As a consequence, this scaling
behavior provides a lower bound for the structural cut-off
of the network, in the sense that, whenever the cut-off of
the degree distribution falls below this limit, the condition
rkk′ < 1 is always satisfied.

3.1 Uncorrelated networks

Let us first analyze the class of uncorrelated networks. In
this case the joint distribution factorizes as

Pnc(k, k′) =
kk′P (k)P (k′)

〈k〉2 (14)

which, in turn, implies that the ratio rkk′ takes the simple
form [21]

rkk′ =
kk′

〈k〉N . (15)

In this case, the structural cut-off needed to preserve the
physical condition rkk′ ≤ 1 takes the form

ks(N) ∼ (〈k〉N)1/2, (16)

independent of the degree distribution, and in particular,
of the degree exponent γ in SF networks. This structural
cut-off, which has been already discussed in the context
of the random network model proposed by Chung and
Lu [24,25], and also by reference [26], coincides with the
natural cut-off when the exponent of the degree distri-
bution is γ = 3 (for instance, the Barabási-Albert net-
work [27]). For γ > 3, the structural cut-off diverges faster
than the natural cut-off, and therefore the latter should be
selected as the appropriate one [26]. For γ < 3, however,
the exponent of the natural cut-off is greater than 1/2
and, as a consequence, the cut-off predicted by extreme
value theory is diverging faster than the structural one.
In other words, this means that uncorrelated SF networks
without multiple edges and exponent γ < 3 must possess
a cut-off that behaves as the structural cut-off and is thus
smaller than the one predicted by the extreme value the-
ory. If this is not the case, that is, if the actual cut-off is
imposed to be larger than the structural cut-off ks, this
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means that the network is not totally uncorrelated and
some negative correlations, such as those observed in the
Internet [28], must appear in order to fulfill the constraint
rkk′ ≤ 1 [25,29].

3.2 Correlated networks

For correlated networks the position of the cut-off will de-
pend, in general, on the nature of the correlations through
the specific form of rkk′ . For assortative networks, that
is, networks with positive degree correlations, the cut-off
must be even smaller than the uncorrelated one since,
in these class of networks, high degree vertices connect
preferably to other high degree vertices increasing, thus,
the value of rkk′ at k 	 k′. This could explain, for in-
stance, the appearance of an abrupt cut-off after a power
law regime in many social networks, such as the net-
work of movie actors [30], which have been found to
show assortative mixing. In the opposite case of disas-
sortative networks the cut-off can be higher because, in
this case, high degree vertices connect preferably to low
degree ones and, as a consequence, the ratio rkk′ is re-
duced near the region k 	 k′. In summary, the structural
cut-off for SF networks lies somewhere within the inter-
val [(αN)1/(γ+1), (βN)1/(γ−1)], where α and β are char-
acteristic constants, depending on their correlation struc-
ture. In particular, ks ∼ N1/2 corresponds to uncorrelated
networks whereas greater values of the exponent indicate
disassortative correlations and smaller values assortative
mixing by degree [16,17].

4 The configuration model

In order to check our previous arguments, we shall con-
sider the configuration model (CM), proposed by Mol-
loy and Reed [31,32] as a practical algorithm to gener-
ate uncorrelated random networks with a designed degree
distribution. The model first generates a sequence of N
degrees, which are independently drawn from the distri-
bution P (k), and then it proceeds by connecting pairs of
randomly chosen edge ends. At the same time, however,
the model generates a number of multiple edges and tad-
poles, that is, edges connected to the same vertex at both
ends. When the degree distribution has a finite second
moment the fraction of multiple edges and tadpoles over
the total number of edges vanishes in the thermodynamic
limit and, as a consequence, they can be neglected. For
SF networks with exponent γ < 3, the situation is dif-
ferent [29] as it can be shown by applying the reasoning
concerning the scaling of the degree distribution cut-off.
The problematic degree classes are those connecting ver-
tices of degrees satisfying

kk′ > 〈k〉N. (17)

For an uncorrelated SF network with degree exponent 2 <
γ < 3, the total number of edges satisfying this condition
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Fig. 2. Number of multiple edges plus tadpoles satisfying con-
dition (17) as a function of the size of the network, 〈k〉N , for
different values of the exponent γ in the configuration model.
The inset shows the scaling exponents compared to the the-
oretical value 3 − γ. Each point corresponds to an average
over 104 networks.

can be calculated, in the limit N � 1, as

∑
kk′>〈k〉N

Ekk′ ∼ N〈k〉
∫ N

dk

∫ ∞

〈k〉N/k

dk′Pnc(k, k′)

∼ (〈k〉N)3−γ ln N. (18)

These edges correspond to an unphysical situation and
therefore must be balanced by a similar scaling of multiple
edges plus tadpoles in order to restore a physical structure
for the network connectivity. We thus expect the same
scaling law for the number of multiple edges plus tadpoles
satisfying condition (17) generated by the CM algorithm.
In order to check this ansatz we have performed numerical
simulations using the CM for exponents γ < 3 and we have
computed the number of multiples edges plus tadpoles as
a function of the network size N . The results, shown in
Figure 2, are in very good agreement with our ansatz.

The weight of these multiple edges with respect to the
overall number of edges is small, a fact that could induce
us to conclude that these multiple edges are not impor-
tant. This is not completely true, however, since these mul-
tiple edges are not homogeneously distributed among all
the degree classes; i.e. they are present in classes with de-
gree larger than the structural cut-off ks ∼ N1/2. This
implies that, in the thermodynamic limit, all edges con-
necting vertices with degrees satisfying condition (17) will
always contain a finite fraction of multiple edges and tad-
poles. It is also interesting to note that by imposing further
constraints to avoid this problem usually generates further
correlations. For instance, by imposing the restriction that
only one edge may connect a pair of vertices will forbid
the natural tendency of high degree vertices to connect
mutually and favor their linking with small degree ver-
tices, originating the presence of effective disassortative
correlations, as discussed in references [25,29].
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5 Conclusions

In the present work we have analyzed the behavior of the
maximum degree in networks with finite size N . The nat-
ural cut-off scaling usually considered is not always the
appropriate one. The constraints imposed by the connec-
tivity structure of networks of finite size generate sponta-
neous correlations that introduce a structural cut-off that
in some regimes is diverging slower that the natural one
and then determines the actual scaling of the maximum
degree. Strikingly, this phenomenon occurs also in random
uncorrelated networks with SF degree distribution with
γ < 3, that are usually used as a first approximations to
represent many real networked structures. These results
might be particularly relevant in the evaluation of the re-
silience to damage and the spreading of infective agents
in SF networks. Indeed, the absence of intrinsic epidemic
and damage thresholds makes these processes dominated
by finite size effects. In this case, a careful determination
of the cut-off behavior with respect to the network’s size
is determinant in the calculation of the effective thresh-
olds which determines the behavior of these dynamical
processes.
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